From terabytes to insights: Real-world AI obervability architecture

Share This Post

[ad_1]

Want smarter insights in your inbox? Sign up for our weekly newsletters to get only what matters to enterprise AI, data, and security leaders. Subscribe Now


Consider maintaining and developing an e-commerce platform that processes millions of transactions every minute, generating large amounts of telemetry data, including metrics, logs and traces across multiple microservices. When critical incidents occur, on-call engineers face the daunting task of sifting through an ocean of data to unravel relevant signals and insights. This is equivalent to searching for a needle in a haystack. 

This makes observability a source of frustration rather than insight. To alleviate this major pain point, I started exploring a solution to utilize the Model Context Protocol (MCP) to add context and draw inferences from the logs and distributed traces. In this article, I’ll outline my experience building an AI-powered observability platform, explain the system architecture and share actionable insights learned along the way.

Why is observability challenging?

In modern software systems, observability is not a luxury; it’s a basic necessity. The ability to measure and understand system behavior is foundational to reliability, performance and user trust. As the saying goes, “What you cannot measure, you cannot improve.”

Yet, achieving observability in today’s cloud-native, microservice-based architectures is more difficult than ever. A single user request may traverse dozens of microservices, each emitting logs, metrics and traces. The result is an abundance of telemetry data:


AI Scaling Hits Its Limits

Power caps, rising token costs, and inference delays are reshaping enterprise AI. Join our exclusive salon to discover how top teams are:

  • Turning energy into a strategic advantage
  • Architecting efficient inference for real throughput gains
  • Unlocking competitive ROI with sustainable AI systems

Secure your spot to stay ahead: https://bit.ly/4mwGngO


  • Tens of terabytes of logs per day
  • Tens of millions of metric data points and pre-aggregates
  • Millions of distributed traces
  • Thousands of correlation IDs generated every minute

The challenge is not only the data volume, but the data fragmentation. According to New Relic’s 2023 Observability Forecast Report, 50% of organizations report siloed telemetry data, with only 33% achieving a unified view across metrics, logs and traces.

Logs tell one part of the story, metrics another, traces yet another. Without a consistent thread of context, engineers are forced into manual correlation, relying on intuition, tribal knowledge and tedious detective work during incidents.

Because of this complexity, I started to wonder: How can AI help us get past fragmented data and offer comprehensive, useful insights? Specifically, can we make telemetry data intrinsically more meaningful and accessible for both humans and machines using a structured protocol such as MCP? This project’s foundation was shaped by that central question.

Understanding MCP: A data pipeline perspective

Anthropic defines MCP as an open standard that allows developers to create a secure two-way connection between data sources and AI tools. This structured data pipeline includes:

  • Contextual ETL for AI: Standardizing context extraction from multiple data sources.
  • Structured query interface: Allows AI queries to access data layers that are transparent and easily understandable.
  • Semantic data enrichment: Embeds meaningful context directly into telemetry signals.

This has the potential to shift platform observability away from reactive problem solving and toward proactive insights.

System architecture and data flow

Before diving into the implementation details, let’s walk through the system architecture.

Architecture diagram for the MCP-based AI observability system

In the first layer, we develop the contextual telemetry data by embedding standardized metadata in the telemetry signals, such as distributed traces, logs and metrics. Then, in the second layer, enriched data is fed into the MCP server to index, add structure and provide client access to context-enriched data using APIs. Finally, the AI-driven analysis engine utilizes the structured and enriched telemetry data for anomaly detection, correlation and root-cause analysis to troubleshoot application issues. 

This layered design ensures that AI and engineering teams receive context-driven, actionable insights from telemetry data.

Implementative deep dive: A three-layer system

Let’s explore the actual implementation of our MCP-powered observability platform, focusing on the data flows and transformations at each step.

Layer 1: Context-enriched data generation

First, we need to ensure our telemetry data contains enough context for meaningful analysis. The core insight is that data correlation needs to happen at creation time, not analysis time.

def process_checkout(user_id, cart_items, payment_method):
    “””Simulate a checkout process with context-enriched telemetry.”””
        
    # Generate correlation id
    order_id = f”order-{uuid.uuid4().hex[:8]}”
    request_id = f”req-{uuid.uuid4().hex[:8]}”
   
    # Initialize context dictionary that will be applied
    context = {
        “user_id”: user_id,
        “order_id”: order_id,
        “request_id”: request_id,
        “cart_item_count”: len(cart_items),
        “payment_method”: payment_method,
        “service_name”: “checkout”,
        “service_version”: “v1.0.0”
    }
   
    # Start OTel trace with the same context
    with tracer.start_as_current_span(
        “process_checkout”,
        attributes={k: str(v) for k, v in context.items()}
    ) as checkout_span:
       
        # Logging using same context
        logger.info(f”Starting checkout process”, extra={“context”: json.dumps(context)})
       
        # Context Propagation
        with tracer.start_as_current_span(“process_payment”):
            # Process payment logic…
            logger.info(“Payment processed”, extra={“context”:

json.dumps(context)})

Code 1. Context enrichment for logs and traces

This approach ensures that every telemetry signal (logs, metrics, traces) contains the same core contextual data, solving the correlation problem at the source.

Layer 2: Data access through the MCP server

Next, I built an MCP server that transforms raw telemetry into a queryable API. The core data operations here involve the following:

  1. Indexing: Creating efficient lookups across contextual fields
  2. Filtering: Selecting relevant subsets of telemetry data
  3. Aggregation: Computing statistical measures across time windows
@app.post(“/mcp/logs”, response_model=List[Log])
def query_logs(query: LogQuery):
    “””Query logs with specific filters”””
    results = LOG_DB.copy()
   
    # Apply contextual filters
    if query.request_id:
        results = [log for log in results if log[“context”].get(“request_id”) == query.request_id]
   
    if query.user_id:
        results = [log for log in results if log[“context”].get(“user_id”) == query.user_id]
   
    # Apply time-based filters
    if query.time_range:
        start_time = datetime.fromisoformat(query.time_range[“start”])
        end_time = datetime.fromisoformat(query.time_range[“end”])
        results = [log for log in results
                  if start_time <= datetime.fromisoformat(log[“timestamp”]) <= end_time]
   
    # Sort by timestamp
    results = sorted(results, key=lambda x: x[“timestamp”], reverse=True)
   
    return results[:query.limit] if query.limit else results

Code 2. Data transformation using the MCP server

This layer transforms our telemetry from an unstructured data lake into a structured, query-optimized interface that an AI system can efficiently navigate.

Layer 3: AI-driven analysis engine

The final layer is an AI component that consumes data through the MCP interface, performing:

  1. Multi-dimensional analysis: Correlating signals across logs, metrics and traces.
  2. Anomaly detection: Identifying statistical deviations from normal patterns.
  3. Root cause determination: Using contextual clues to isolate likely sources of issues.
def analyze_incident(self, request_id=None, user_id=None, timeframe_minutes=30):
    “””Analyze telemetry data to determine root cause and recommendations.”””
   
    # Define analysis time window
    end_time = datetime.now()
    start_time = end_time – timedelta(minutes=timeframe_minutes)
    time_range = {“start”: start_time.isoformat(), “end”: end_time.isoformat()}
   
    # Fetch relevant telemetry based on context
    logs = self.fetch_logs(request_id=request_id, user_id=user_id, time_range=time_range)
   
    # Extract services mentioned in logs for targeted metric analysis
    services = set(log.get(“service”, “unknown”) for log in logs)
   
    # Get metrics for those services
    metrics_by_service = {}
    for service in services:
        for metric_name in [“latency”, “error_rate”, “throughput”]:
            metric_data = self.fetch_metrics(service, metric_name, time_range)
           
            # Calculate statistical properties
            values = [point[“value”] for point in metric_data[“data_points”]]
            metrics_by_service[f”{service}.{metric_name}”] = {
                “mean”: statistics.mean(values) if values else 0,
                “median”: statistics.median(values) if values else 0,
                “stdev”: statistics.stdev(values) if len(values) > 1 else 0,
                “min”: min(values) if values else 0,
                “max”: max(values) if values else 0
            }
   
   # Identify anomalies using z-score
    anomalies = []
    for metric_name, stats in metrics_by_service.items():
        if stats[“stdev”] > 0:  # Avoid division by zero
            z_score = (stats[“max”] – stats[“mean”]) / stats[“stdev”]
            if z_score > 2:  # More than 2 standard deviations
                anomalies.append({
                    “metric”: metric_name,
                    “z_score”: z_score,
                    “severity”: “high” if z_score > 3 else “medium”
                })
   
    return {
        “summary”: ai_summary,
        “anomalies”: anomalies,
        “impacted_services”: list(services),
        “recommendation”: ai_recommendation
    }

Code 3. Incident analysis, anomaly detection and inferencing method

Impact of MCP-enhanced observability

Integrating MCP with observability platforms could improve the management and comprehension of complex telemetry data. The potential benefits include:

  • Faster anomaly detection, resulting in reduced minimum time to detect (MTTD) and minimum time to resolve (MTTR).
  • Easier identification of root causes for issues.
  • Less noise and fewer unactionable alerts, thus reducing alert fatigue and improving developer productivity.
  • Fewer interruptions and context switches during incident resolution, resulting in improved operational efficiency for an engineering team.

Actionable insights

Here are some key insights from this project that will help teams with their observability strategy.

  • Contextual metadata should be embedded early in the telemetry generation process to facilitate downstream correlation.
  • Structured data interfaces create API-driven, structured query layers to make telemetry more accessible.
  • Context-aware AI focuses analysis on context-rich data to improve accuracy and relevance.
  • Context enrichment and AI methods should be refined on a regular basis using practical operational feedback.

Conclusion

The amalgamation of structured data pipelines and AI holds enormous promise for observability. We can transform vast telemetry data into actionable insights by leveraging structured protocols such as MCP and AI-driven analyses, resulting in proactive rather than reactive systems. Lumigo identifies three pillars of observability — logs, metrics, and traces — which are essential. Without integration, engineers are forced to manually correlate disparate data sources, slowing incident response.

How we generate telemetry requires structural changes as well as analytical techniques to extract meaning.

Pronnoy Goswami is an AI and data scientist with more than a decade in the field.


[ad_2]
Source link

Related Posts

Eat and Run Verification as a Safety Standard in Online Betting

The Growing Need for Safety in Online BettingOnline betting...

High-Quality Online Gaming Sites Like Gaza88

The online gaming industry has matured into a highly...

Online Gaming Platform Shutdown Scams: A Warning Report

The world of online gaming is filled with exciting...

The Best Apps for Mobile Live Video Broadcasting

Why Mobile Live Broadcasting Keeps GrowingMobile live video broadcasting...

Top Benefits of Choosing Mobile Crane Hire Over Buying

In today’s fast-moving construction and industrial landscape, flexibility and...

Dive Into New Challenges and Win Big

Embrace the Excitement of Overcoming Challenges and Achieving Great...
- Advertisement -spot_img
Slot Gacor Slot777slot mahjongslot mahjongjudi bola onlinesabung ayam onlinejudi bola onlinelive casino onlineslot danaslot thailandsabung ayam onlinejudi bola onlinesitus live casino onlineslot mahjong waysbandar togel onlinejudi bolasabung ayam onlinejudi bolaSABUNG AYAM ONLINESABUNG AYAM ONLINEJUDI BOLA ONLINESABUNG AYAM ONLINEjudi bola onlineslot mahjong wayslive casino onlinejudi bola onlinejudi bola onlinesabung ayam onlinejudi bola onlinemahjong wayssabung ayam onlinesbobet88slot mahjongsabung ayam onlinesbobet mix parlayslot777judi bola onlinesabung ayam onlinesabung ayam onlinejudi bola onlinelive casino onlineslot mahjong waysjuara303juara303juara303juara303juara303juara303juara303juara303SV388Mix ParlayBLACKJACKSLOT777Sabung Ayam OnlineBandar Judi BolaAgen Sicbo Online
agen sabung ayamslot mahjong gacorsabung ayam onlinejudi bola onlinelive casino onlineslot mahjongsabung ayam onlinejudi bola onlinelive casino onlineslot mahjongslot mahjongsabung ayam onlinescatter hitamlive casino onlinemix parlaysabung ayam onlinelive casinomahjong waysmix parlaysabung ayam onlinelive casinomahjong waysmix parlaySBOBETSBOBETCASINO ONLINESBOBETSBOBET88SABUNG AYAM ONLINESBOBETagen judi bolalive casino onlinesabung ayam onlinejudi bola sbobetsabung ayam onlineSabung Ayam OnlineJudi Bola OnlineAgen Live Casino OnlineMahjong Ways 2Sabung Ayam OnlineJudi Bola OnlineAgen Live Casino OnlineMahjong Ways 2Sabung Ayam OnlineJudi Bola OnlineAgen Live Casino OnlineMahjong Ways 2slot gacorjudi bolamix parlayjudi bolasv388SABUNG AYAM ONLINELIVE CASINO ONLINEJUDI BOLAMAHJONG WAYSSLOT MAHJONGJUDI BOLA ONLINELIVE CASINO ONLINESABUNG AYAM ONLINE
SABUNG AYAM ONLINESABUNG AYAM ONLINEJUDI BOLA ONLINEJUDI BOLA ONLINESABUNG AYAM ONLINESABUNG AYAM ONLINESABUNG AYAM ONLINESABUNG AYAM ONLINEjudi bola onlinesabung ayam onlinelive casino onlinesitus toto 4djudi bola onlinejudi bola onlinesabung ayam onlinelive casino onlinejudi bola onlinemix parlaysbobet88sv388sbobet mix parlayws168sbobet88sv388sv388sbobet88sabung ayam onlinejudi bola onlinesabung ayam onlinesbobet mix parlaysabung ayam onlinejudi bola onlineslot gacorsabung ayam onlinejudi bola onlinelive casino onlineslot mahjong waysjuara303juara303juara303juara303juara303juara303juara303juara303juara303juara303juara303juara303juara303juara303juara303juara303SV388Mix ParlayLive Casino OnlineSitus Slot GacorSV388SBOBET WAPBlackjackPragmatic PlaySV388Judi Bola OnlineBlackjackKakek ZeusSV388Mix ParlayAgen BlackjackSlot Gacor Onlinesabung ayam onlinejudi bola onlinesabung ayam onlinejudi bola onlinejudi bola onlinejudi bola onlinejudi bola onlinesabung ayam onlinejudi bola onlineslot mahjong wayssabung ayam onlinejudi bolaslot mahjonglive casino onlinesabung ayam onlinejudi bola onlineslot mahjong gacorsitus toto togel 4Dsabung ayam onlinesitus toto togel 4Dsitus live casinojudi bola onlinesitus slot mahjongjudi bolasabung ayam onlinesabung ayam onlinemahjong wayssabung ayam onlinejudi bolasabung ayam onlinejudi bola
judi bola onlinejudi bola onlinejudi bola onlinejudi bola onlineJUDI BOLA ONLINESBOBET88JUDI BOLA ONLINEJUDI BOLA ONLINESV388Judi Bola OnlineBlackjackKakek ZeusSV388SBOBET WAPAgen BlackjackSlot Gacor Onlinejuara303juara303juara303juara303juara303juara303juara303juara303judi bola onlinejudi bola onlinejudi bola onlinesabung ayam onlinejudi bolasabung ayam onlinesabung ayam onlinejudi bola onlinesitus live casino onlineslot mahjong wayssabung ayam onlinesitus live casinojudi bola onlinedexel
Slot Mahjong Waysslot danaslot danaslot danasabung ayam onlinesabung ayam onlineJUDI BOLA ONLINESV388Mix ParlayAgen Casino OnlineSLOT777Sabung Ayam OnlineAgen Judi BolaLive Casino Onlinesabung ayam onlinesabung ayam onlinejudi bola onlineslot mahjong wayssabung ayam onlinejudi bola onlinesitus live casino onlineagen togel onlineSabung Ayam OnlineJudi Bola OnlineSlot MahjongBandar togelSabung Ayam OnlineJudi Bola Onlinejudi bola onlinejudi bola onlinesabung ayam onlinelive casino onlineJUDI BOLA ONLINESBOBET88JUDI BOLA ONLINEmix parlaymix parlaylive casinosabung ayam onlinemix parlayslot danaslot mahjongslot mahjongjudi bolaMAHJONG WAYS 2SABUNG AYAM ONLINELIVE CASINO ONLINESABUNG AYAM ONLINESBOBETLIVE CASINO ONLINESLOT MAHJONG WAYSSABUNG AYAM ONLINEMIX PARLAYSABUNG AYAM ONLINESABUNG AYAM ONLINEWALA MERONWALA MERONSITUS SABUNG AYAMSITUS SABUNG AYAMjudi bola terpercayaSabung Ayam Onlinemix parlaySabung Ayam OnlineZeus Slot GacorSitus Judi BolaSabung Ayam Onlinesitus sabung ayamSlot MahjongSV388SBOBET88live casino onlineslot mahjong gacorSV388SBOBET88live casino onlineslot mahjong gacorSabung Ayam OnlineJudi Bola OnlineCasino OnlineMahjong Ways 2Sabung Ayam OnlineJudi Bola OnlineLive Casino OnlineMahjong Ways 2judi bolacasino onlinesv388sabung ayam onlinejudi bola onlineagen live casino onlinemahjong waysLIVE CASINOJUDI BOLA ONLINESABUNG AYAM ONLINESITUS BOLASV388LIVE CASINO ONLINESLOT QRISSABUNG AYAM ONLINEMIX PARLAYMIX PARLAYJUDI BOLA ONLINESLOT MAHJONG
Mahjong Ways 2mahjong ways 2indojawa88daftar dan login wahanabetCapWorks Official ContactAynsley Official SitedexelHarifuku Clinic Official AccessNusa Islands Bali Official PackagesTrinidad and Tobago Pilots’ Association Official About PageNusa Islands Bali Official ContactCapworks Official SiteTech With Mike First Official SiteSahabat Tiopan Official SiteOcean E Soft Official SiteCang Vu Hai Phong Official SiteThe Flat Official SiteTop Dawg Tavern Official SiteDuhoc Interlink Official SiteRatiohead Official SiteMAN Surabaya E-Learning Official SiteShaker Group Official SiteTakaKawa Shoten Official SiteBrydan Solutions Official SiteConcursos Rodin Official SiteConmou Official SiteCareer Wings Official SiteMontero Espinosa Official SiteBDF Ventura Official SiteAkura Official SiteNamulanda Technical Institute Official Sitemenu home roasted coffeetosayama academy workshopjudi bola onlineContactez le Monaco Rugby Sevens - Club Professionnel à 7Virtual Eco Museum Official Event 2025DRT Seitai Official Contacta leading company in UWB technology development